首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   21篇
  国内免费   3篇
测绘学   1篇
大气科学   8篇
地球物理   88篇
地质学   99篇
海洋学   13篇
天文学   36篇
综合类   2篇
自然地理   2篇
  2022年   2篇
  2021年   3篇
  2020年   11篇
  2019年   9篇
  2018年   8篇
  2017年   19篇
  2016年   12篇
  2015年   13篇
  2014年   11篇
  2013年   13篇
  2012年   11篇
  2011年   19篇
  2010年   16篇
  2009年   18篇
  2008年   11篇
  2007年   12篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
71.
Most of the documented slope failures triggered by the 1980 Irpinia earthquake (Ms 6.9) occurred in the upper Sele valley epicentral area (southern Italy). The early investigations revealed some puzzling characteristics of the slope failure distribution, i.e., (i) the higher landslide concentration on the valley slopes located farther away from the earthquake fault; (ii) the predominance of re-activations over first-time movements. The analyses of factors controlling the landslide concentrations indicates that the differences in hydrological setting and in slope were the two main causal factors whereas the seismic shaking, according to the radiation pattern modelling, could have been characterised by a relatively low rate of decrease across the valley. The aspect of the slopes did not play a significant role. The differences in groundwater conditions between the western and eastern valley sides were probably enhanced by the earthquake. In addition to the probable pore-water pressure rise, the seismic shaking caused large increases in the flow of springs draining the western aquifer, and this made the adjacent flysch slopes more prone to landsliding. Data from the available literature suggest that the effects of earthquake-induced groundwater release on seismic landslide distribution is especially important for normal-fault events. The Sele valley case also indicates that the slope of the pre-existing landslides is an important factor controlling their susceptibility to seismic re-activations.  相似文献   
72.
The interplanetary medium is characterized by a very high Reynolds number and is pervaded by fluctuations providing information on a wide range of scales, from fractions of second up to the solar rotation period. In the past decade or so, turbulence in the solar wind has been used as a large wind tunnel to investigate scaling laws of turbulent fluctuations and multifractal models. Moreover, new interesting insights in the theory of turbulence have been derived from the point of view which considers a turbulent flow as a complex system, a sort of benchmark for the theory of dynamical systems. Important finding like the lack of a strict self-similarity of the fluctuations with the consequent nonapplicability of strict scale invariance, the strong anisotropy of velocity and magnetic field fluctuations, the clear lack of equipartition between magnetic and kinetic fluctuations all contributed to suggest the idea that interplanetary fluctuations could possibly be due to a mixture of propagating waves and static structures convected by the wind. In this paper we further discuss this point and bring new evidence about the fact that the presence of a background magnetic field introduces not only a symmetry breaking in interplanetary space but also organizes fluctuations about its large scale orientation.  相似文献   
73.
We investigate the properties of intermittency of magnetic turbulence by using magnetic field data collected by the Helios spacecraft in the inner heliosphere. Clear scaling laws for magnetic structure functions are visible in periods where the velocity of the bulk plasma is low. Within these periods we found that intermittency of magnetic turbulence is high with respect to velocity field. A comparison with fluid flows where passive scalars are more intermittent than velocity, yields to consider the magnetic field like a “passive vector”.  相似文献   
74.
Sampling the collected suspension in a storage tank is a common procedure to obtain soil loss data. A calibration curve of the tank has to be used to obtain actual concentration values from those measured by sampling. However, literature suggests that using a tank calibration curve was not a common procedure in the past. For the clay soil of the Sparacia (Italy) experimental station, this investigation aimed to establish a link between the relative performances of the USLE‐M and USLE‐MM models, usable to predict plot soil loss at the event temporal scale, and soil loss measurement errors. Using all available soil loss data, lower soil loss prediction errors were obtained with the USLE‐MM (exponent of the erosivity term, b1 > 1) than the USLE‐M (b1 = 1). A systematic error of the soil loss data is unexpected for the Sparacia soil because the calibration curve does not depend on the water level in the tank. In any case, this type of error does not have any effect on the b1 exponent. Instead, this exponent decreases as the level of underestimation increases for increasing soil loss values. This type of error can occur at Sparacia if it is assumed that a soil loss measurement can be obtained by a bottle sampler dipped close to the bottom of the tank after mixing the suspension and assuming that the measured concentration coincides with the actual one. In this case, the risk is to obtain a lower b1 value than the actual one. In conclusion, additional investigations on the factors determining errors in soil loss data collected by a sampling procedure are advisable because these errors can have a noticeable effect on the calibrated empirical models for soil loss prediction.  相似文献   
75.
The first part of this investigation was aimed at testing the use of a three‐dimensional (3D) digital terrain model and a quasi‐tridimensional (2.5D) digital elevation model obtained by a large series of oblique images of eroded channels taken from consumer un‐calibrated and non‐metric cameras. For two closed earth channels having a different sinuosity, the ground measurement of some cross sections by a profilometer (P) was carried out and their real volume was also measured. The comparison among the three methods (3D, 2.5D, and P) pointed out that a limited underestimation of the total volume always occurs and that the 3D method is characterized by the minimum difference between measured and real volume. For this reason, 3D model can be used as benchmark. In the subsequent part of the investigation, the three ground measurement methods were applied for surveying of an ephemeral gully (EG) channel at the Sparacia area. The morphological and hydraulic variable values of the 24 surveyed cross sections determined by both 2.5D model and profilometer were compared. This comparison showed that the estimate error is generally less than ±10%. The EG measurements carried out by the three methods supported the applicability both of the empirical relationship between EG length and its eroded volume and the theoretical dimensionless relationship among the morphological variables describing the channelized erosion process. Finally, it was demonstrated that the effect of the distance interval on the EG volume measurement by 3D and 2.5D models is negligible for the investigated EG.  相似文献   
76.
Precise dating of the activity of Late Pleistocene to Holocene neo‐tectonic structures is crucial to quantify the rate of deformation in low‐seismicity regions. Sardinia is a relatively stable continental fragment set in the middle of the tectonically active Western Mediterranean belt. This paper provides evidences of significant uplift of northwest Sardinia that support an ongoing tectonic activity since the Marine Isotopic Stage 7 (MIS 7; ca. 220 ka). In particular, it documents for the first time Late Pleistocene to Holocene tectonics based on luminescence dating of travertine sealing a major NNE‐SSW fault.  相似文献   
77.
In this work we try to better characterise the shallow magnetic signature of hydrocarbon microseepage in oil fields from eastern and western Venezuela. To get a better insight of the processes involved, we attempt to find out the main magnetic phases responsible for the observed oil-related shallow magnetic anomalies. In this way, a new and alternative numerical approach to decompose Isothermal Remagnetization (IRM) curves is introduced. The method is based on a Direct Signal Analysis (DSA) of the IRM curve in order to identify the number and type of magnetic components. Representative wells from western (La Victoria) and eastern (San Joaquín) Venezuelan fields are studied. The DSA approach, together with rock magnetic experimental results, indicates that in the well from western Venezuela the main magnetic mineralogy associated to hydrocarbon microseepage is magnetite. Conversely, in the well from eastern Venezuela, these MS anomalies are mainly caused by the presence of Fe-sulphides (i.e. greigite). These results support the hypothesis of two different authigenic processes. For the well at the western field, we propose that a net electron transfer from the organic matter, degraded by hydrocarbon gas leakage, should occur precipitating Fe(II) magnetic minerals (e.g. magnetite). On the other hand, in the well of the eastern field, high concentrations of H2S at shallow levels, might allow the formation of secondary Fe-sulphides.  相似文献   
78.
The Antarctic Ross Orogen was built up during the early Paleozoic in the framework of the convergence between the Paleo-Pacific oceanic plate and the Gondwana continental margin. Models for the Ross Orogen in northern Victoria Land are based on terranes having a variable provenance with respect to the margin. However, recent studies provide evidence for the occurrence of different pieces of the lithospheric puzzle: (i) the Wilson continental magmatic arc, representing the main part of the active Gondwana margin, (ii) the Bowers arc–backarc system, (iii) the Admiralty crustal ribbon including continental material of the Wilson forearc, and (iv) the newly discovered, Cambrian oceanic magmatic Tiger arc, along the Ross Sea coast. An updated model is presented in which, after the Early Cambrian magmatic activity of the Wilson arc, a retreat of the subduction zone in the Early–Middle Cambrian gave way to boudinage of the Wilson forearc, trenchward arc migration, opening of the Bowers backarc basin and inception of the outboard Tiger subduction zone. Renewed convergence resulted in the development of the Middle Cambrian Bowers arc, closure of the backarc and deep underthrusting of portions of it at the Middle–Late Cambrian. Finally, in the latest Cambrian to earliest Ordovician, fast exhumation was coupled in the north with erosion and sediment shed to the northeast, and with extension and potassic magmatism in central and southern Victoria Land.  相似文献   
79.
The role of catastrophic collisions in the evolution of the asteroids is discussed in detail, employing extrapolations of experimental results on the outcomrs of high-velocity impacts. We determine the range of the probable largest collision for target asteroids of different sizes during the solar system's lifetime, and we conclude that all the asteroids have undergone collisional events capable of overcoming the material's solid-state cohesion. Such events do not lead inescapably to complete disruption of the targets, because (i) for a previously unfractured target, experiments show that fragments of significant size can survive breakup, depending on the energy and geometry of the collision; (ii) self-gravitation can easily cause a reaccumulation of fragments for targets exceeding a critical size, which seems to be of the order of 100 km. In the intermediate diameter range 100?D ?300 km, where formation of gravitationally bound “rubble piles” is frequent, the transfer of angular momentum can be large enough to produce objects with triaxial equilibrium shapes (Jacobi ellipsoids) or to cause fission into binary systems. In the same size range, low-velocity escape of collisional fragments can also occur, leading to the formation of dynamical families. Asteroids smaller than ~100 km are mostly multigeneration fragments, while for D?300 km the collisional process produces nearly spheroidal objects covered by megaregoliths; whether their rotation is “primordial” or collisionally generated depends critically on the past flux of colliders. The complex and size-dependent phenomenology predicted by the theory compares satisfactorily with the observational evidence, as derived both by a classification of asteroids in terms of their size, spin rate, and lightcurve amplitude, and by a comparison between the rotational properties of family and nonfamily asteroids. The fundamental result of this investigation is that almost all asteroids are outcomes of catastrophic collisions, and that these events cause either complete fragmentation of the target bodies or, at least, drastic readjustments of their internal structure, shape, and spin rate.  相似文献   
80.
Seismic surveys with sub‐bottom profiler were carried out in the Manfredonia Gulf in the southern Adriatic Sea. Here, a buried surface was recognized on which three valleys, located about 80 km from the shelf edge, were deeply incised. Beneath this surface, a pre‐upper Würm seismic unit (PW) was identified. Above, two seismic units were recognized: the transgressive system tract (TST) and highstand system tract (g2). On the basis of regional correlation with onshore and offshore data, these units and their boundaries were dated and correlated with phases of the last glacial–interglacial cycle. The incised valley system was attributed to the Marine Isotopic Stage (MIS) 2. The TST and g2 units fill the valleys and were attributed to the post‐glacial sea‐level rise and highstand. The incised valleys are anomalous with respect to published models; despite having many characteristics that would have limited the fluvial incision (the lowstand shoreline that remained on the shelf, the low gradient of the shelf, the subsidence that affected the study area since MIS 5), the valleys appear to be deeply incised on the shelf, with valley flanks that can exceed 40 m in height. The model to explain the formation of the valleys comprises enhanced river discharge as the key factor in increasing river energy and promoting erosion across the low gradient shelf. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号